Integrated Systems and Technologies Optical Metabolic Imaging Identifies Glycolytic Levels, Subtypes, and Early-Treatment Response in Breast Cancer
نویسندگان
چکیده
Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of quantitative methods to dynamically image this powerful cellular function. Optical metabolic imaging (OMI) is a noninvasive, highresolution, quantitative tool for monitoring cellular metabolism. OMI probes the fluorescence intensities and lifetimes of the autofluorescent metabolic coenzymes reduced NADH and flavin adenine dinucleotide. We confirm that OMI correlates with cellular glycolytic levels across a panel of human breast cell lines using standard assays of cellular rates of glucose uptake and lactate secretion (P < 0.05, r 1⁄4 0.89). In addition, OMI resolves differences in the basal metabolic activity of untransformed from malignant breast cells (P < 0.05) and between breast cancer subtypes (P < 0.05), defined by estrogen receptor and/or HER2 expression or absence. In vivoOMI is sensitive to metabolic changes induced by inhibition of HER2 with the antibody trastuzumab (herceptin) in HER2-overexpressing human breast cancer xenografts in mice. This response was confirmed with tumor growth curves and stains for Ki67 and cleaved caspase-3. OMI resolved trastuzumab-induced changes in cellular metabolism in vivo as early as 48 hours posttreatment (P < 0.05), whereas fluorodeoxyglucose-positron emission tomography did not resolve any changes with trastuzumab up to 12 days posttreatment (P > 0.05). In addition, OMI resolved cellular subpopulations of differing response in vivo that are critical for investigating drug resistance mechanisms. Importantly, OMI endpoints remained unchanged with trastuzumab treatment in trastuzumabresistant xenografts (P > 0.05). OMI has significant implications for rapid cellular-level assessment of metabolic response to molecular expression and drug action, which would greatly accelerate drug development studies. Cancer Res; 73(20); 6164–74. 2013 AACR.
منابع مشابه
Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer.
Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of quantitative methods to dynamically image this powerful cellular function. Optical metabolic imaging (OMI) is a noninvasive, high-resolution, quantitative tool for monitoring cellular metabolism. OMI probes the fluorescence intensities and lifetimes of the autofluorescent metabolic coenzymes reduced NADH and flavin...
متن کاملMetabolism Predicts Drug Response in Breast Cancer Quantitative Optical Imaging of Primary Tumor Organoid
There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here, we show that opticalmetabolic imaging of organoids derived fromprimary tumors can predict the therapeutic response of xenografts and measure antitumor drug responses in human tumor–derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and F...
متن کاملQuantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer.
There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here, we show that optical metabolic imaging of organoids derived from primary tumors can predict the therapeutic response of xenografts and measure antitumor drug responses in human tumor-derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and...
متن کاملImproving 3-D Imaging Breast Cancer Diagnosis Systems Using a New Method for Placement of Near-Infrared Sources and Detectors
The objective of this research was to improve 3-D imaging system by near-infrared light emission in breast tissue to achieve a more accurate diagnosis of tumor. The results of repeated experiments in this research have shown that with this imaging system, a more accurate diagnosis of abnormal area depends on the location of the sources and detectors. Therefore, an optimal location model has bee...
متن کاملAward Number: W81XWH-13-1-0194 TITLE: Optically Based Rapid Screening Method for Proven Optimal Treatment Strategies Before Treatment Begins PRINCIPAL INVESTIGATOR:
Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of quantitative methods to dynamically image this powerful cellular function. Optical metabolic imaging (OMI) is a noninvasive, highresolution, quantitative tool for monitoring cellular metabolism. OMI probes the fluorescence intensities and lifetimes of the autofluorescent metabolic coenzymes reduced NADH and flavin ...
متن کامل